如何借力复兴号发展

时间:2020-07-07 04:40:01 作者:h租号网

实现民族复兴的中国梦

每个人都应该有梦想和追求,没有梦想的人生是残缺的人生。梦想不是回忆,是努力,是努力创造活着的意义。居民收入跑赢GDP、伦敦奥运会摘金夺银、“神九”飞天、“蛟龙”下海、航母“辽宁号”入列、诺贝尔文学奖折桂……对中国来说,2012年的确是不凡的一年。个人的“梦”和国家民族的“梦”相伴相融。实现中华民族伟大复兴,就是中华民族近代以来最伟大的梦想。中国现在比历史上任何时期都接近中华民族伟大复兴的目标,也更有能力和信心实现这一目标。实现中华民族的伟大复兴,我们在路上。

查看原帖>>

“复兴号”全面实现自动化了吗?

与高铁建设相比,“复兴号”受到的关注明显更高,几乎在一夜之间家喻户晓、名动世界。2017年5月26日,由中国铁路总公司牵头组织研制、具有完全自主知识产权、达到世界先进水平的“复兴号”在京沪高铁双向首发,并实现350公里的运营时速。时隔6年后,中国凭借“复兴号”重新夺回高铁运营时速最快的王冠。

“‘复兴号’标志着铁路成套技术装备特别是高速动车组已经走在世界先进行列。”陆东福说。“复兴号”大量采用中国国家标准、行业标准、中国铁路总公司企业标准等技术标准,在254项重要标准中,中国标准占84%。“复兴号”设有智能化感知系统,并建有强大的安全监测系统,全车部署了2500余项监测点,能够对走行部状态、轴承温度等进行全方位实时监测,此外,还增设了碰撞吸能装置。

“‘复兴号’比‘和谐号’监测点多了500多个,一秒钟可记录100万个数据。”中车四方股份公司技术中心副主任陶桂东说,京沪高铁单程1318公里,“记录的数据多达300多兆,相当于一趟存了200本《红楼梦》。”

“‘复兴号’坐着很舒服,火车上能充电、能WiFi上网,过隧道或列车交会时耳压也不大。”作为资深铁路迷,老徐说他乘坐过德国、日本等国的高铁,但“没有任何高铁的乘坐感觉比‘复兴号’更好”。

相对于“和谐号”,“复兴号”实现了全面自主化,“特别是首次实现了动车组牵引、制动、网络控制系统的全面自主化,表明中国具备设计制造满足世界各国不同需求动车组的能力。” 中国铁道科学研究院首席研究员陆阳说。

“复兴号”只是中国铁路全面变革、跨入新时代的一个缩影。2017年,中国铁路相继实现微信购票、刷脸进站、互联网订餐等诸多国外没有的智能出行方式,此外,还进行了民营控股高铁、常旅客会员服务、18个铁路局完成工商变更登记等多项改革。

“2018年,铁路将以改革创新为动力,打造中国智能高铁。”陆东福说。服务于2022年北京冬奥会的京张高铁将首次应用自动化驾驶技术,配备了智能供电系统和高速铁路智能调度指挥系统,列车运营、指挥、调度、故障监测等以往需要依靠人力进行的全流程工作,都可以借助人工智能完成。

在当今世界政治发展中,民族与宗教问题是如何相互影响的?

当今世界是一个民族问题普遍存在、 民族关系错综复杂、 民族因素具有广泛影响的世界。由民族矛盾和民族纠纷而引起的种族骚乱、 地区冲突和局部战争层出不穷, 造成许多国家和地区政局不稳、 经济衰退。民族宗教问题已成为当今世界动荡不安的重要根源, 也是影响当今世界及未来国际社会的重要因素。关键词:世界民族宗教 特点 国际关系 影响中图分类号:D635. 1 文献标识码:A 文章编号: 1003- 4641(2009)01- 0054- 03 一、 当今世界民族宗教问题的主要特点1. 世界民族宗教问题政治化倾向更为显著。尽管世界民族宗教问题产生的原因各不相同, 但在当前与各国政治、 经济、 文化乃至国家主权、 领土等问题联系日益紧密, 其政治化倾向更为显著, 尤其是民族问题与宗教问题交织在一起, 使问题更加复杂, 难以化解。(1) 以谋求独立为主要目标的民族分离运动兴起。20 世纪 90 年代以来在前苏联和东欧地区出现的国家裂变和发生在其他地区的民族分离主义运动等大量事实说明, 谋求政治上的独立和分离已成为民族分离运动的常态和目的。如在格鲁吉亚的阿布哈兹和南奥塞梯两个地区的分离战争; 阿塞拜疆境内纳卡州亚美尼亚族人企图脱离阿塞拜疆, 进而同民族母国亚美尼亚合并而导致的阿塞拜疆与亚美尼亚的战争; 土耳其境内建立库尔德斯坦独立国家的运动; 伊拉克北部的库尔德人问题; 南亚次大陆锡克人的分离运动等都集中体现了当今世界上政治倾向最为突出的民族问题。(2)通过各种手段谋求政治地位甚至取得政权已越来越成为世界上一些民族主义势力的目标。以伊斯兰原教旨主义为指导的激进民族主义者明确提出/ 宗教政治化、 政治宗教化0的口号并坚决付诸实践。他们力图保持伊斯兰意识形态的神圣不可超越性, 改变现有伊斯兰国家的世俗化方向, 以最终建立一个教权至上的政教合一政体。而各种泛民族主义势力则打着民族、 宗教同一的旗帜力图复兴传统的势力范围, 建立更为广阔的政治空间, 在新的国际政54治格局中抢占有利位置。2. 西方插手他国民族宗教问题明显增多。一是西方国家为了自己的全球政治、 经济利益及推行霸权主义主张, 越来越多地插手他国民族宗教问题, 加剧了原有地区民族宗教问题的复杂程度。长期以来, 西方国家一直都在致力于建立一个由西方主宰的国际秩序, 从中获取自己的政治、 经济利益。尤其是美国作为冷战后唯一的超级大国, 不断积极地扮演着/ 世界领导者0和/ 世界警察0的角色, 加速构建/ 一超独霸0的世界格局, 任何妨碍美国利益的国家或组织都会受到遏制或打击。在南联盟科索沃和俄罗斯的车臣问题以及伊拉克问题上, 美国的这一目标表现得尤为突出。二是一些国家的民族分裂势力积极谋求与国外分裂势力的联合和西方国家的支持。由于国际社会存在着西方干预行为, 当今世界的民族分裂主义势力越来越多地利用了这一点。他们认为, 自己谋求民族独立的目标, 与西方国家分化、 瓦解战略对手的目标是可以相互合拍的。为此他们不断制造事端, 扩大事态, 与境外的分裂势力加紧勾结, 为西方国家和国际组织插手本国事务提供口实, 使国内民族矛盾国际化, 谋求国际的支持和干预, 以达到自己的分裂目的。3. 民族宗教矛盾和冲突的暴力化倾向日益严重。当今世界, 一些民族宗教势力在谋求自己的政治经济利益或要求民族自决乃至独立的过程中, 由于运用政治手段难以奏效, 这些民族宗教势力中的极端主义者越来越多地借助了暴力手段来解决问题, 他们或者组织武装力量公开抗衡, 或者通过各种暴力恐怖活动进行干扰和破坏, 借以达到民族分离 民族#宗教 5实事求是6 2009年第 1期 或自治的目的, 或增加政治谈判的筹码

从数学的发展历史来看,数学的研究对象各个阶段有哪些

数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期:

1.数学萌芽期(公元前600年以前);

2.初等数学时期(公元前600年至17世纪中叶);

3.变量数学时期(17世纪中叶至19世纪20年代);

4.近代数学时期(19世纪20年代至第二次世界大战);

5.现代数学时期(20世纪40年代以来)

在数学萌芽期这一时期,数学经过漫长时间的萌芽阶段,在生产的基础上积累了丰富的有关数和形的感性知识。到了公元前六世纪,希腊几何学的出现成为第一个转折点,数学从此由具体的、实验的阶段,过渡到抽象的、理论的阶段,开始创立初等数学。此后又经过不断的发展和交流,最后形成了几何、算术、代数、三角等独立学科。世界上最古老的几个国家都位于大河流域:黄河流域的中国;尼罗河下游的埃及;幼发拉底河与底格里斯河的巴比伦国;印度河与恒河的印度。这些国家都是在农业的基础上发展起来的,因此他们就必须掌握四季气候变迁的规律。

现在对于古巴比伦数学的了解主要是根据巴比伦泥版,这些数学泥版表明,巴比伦自公元前2000年左右即开始使用60进位制的记数法进行较复杂的计算了,并出现了60进位的分数,用与整数同样的法则进行计算;已经有了关于倒数、乘法、平方、立方、平方根、立方根的数表;借助于倒数表,除法常转化为乘法进行计算。巴比伦数学具有算术和代数的特征,几何只是表达代数问题的一种方法。这时还没有产生数学的理论。对埃及古代数学的了解,主要是根据两卷纸草书。从这两卷文献中可以看到,古埃及是采用10进位制的记数法。埃及人的数学兴趣是测量土地,几何问题多是讲度量法的,涉及到田地的面积、谷仓的容积和有关金字塔的简易计算法。但是由于这些计算法是为了解决尼罗河泛滥后土地测量和谷物分配、容量计算等日常生活中必须解决的课题而设想出来的,因此并没有出现对公式、定理、证明加以理论推导的倾向。埃及数学的一个主要用途是天文研究,也在研究天文中得到了发展。由于地理位置和自然条件,古希腊受到埃及、巴比伦这些文明古国的许多影响,成为欧洲最先创造文明的地区。

希腊的数学是辉煌的数学,第一个时期开始于公元前6世纪,结束于公元前4世纪。泰勒斯开始了命题的逻辑证明,开始了希腊伟大的数学发展。进入公元前5世纪,爱利亚学派的芝诺提出了四个关于运动的悖论,柏拉图强调几何对培养逻辑思维能力的重要作用,亚里士多德建立了形式逻辑,并且把它作为证明的工具;德谟克利特把几何量看成是由许多不可再分的原子所构成。第二个时期自公元前4世纪末至公元1世纪,这时的学术中心从雅典转移到了亚历山大里亚,因此被称为亚历山大里亚时期。这一时期有许多水平很高的数学书稿问世,并一直流传到了现在。公元前3世纪,欧几里得写出了平面几何、比例论、数论、无理量论、立体几何的集大成的著作几何原本,第一次把几何学建立在演绎体系上,成为数学史乃至思想史上一部划时代的名著。之后的阿基米德把抽象的数学理论和具体的工程技术结合起来,根据力学原理去探求几何图形的面积和体积,奠定了微积分的基础。阿波罗尼写出了《圆锥曲线》一书,成为后来研究这一问题的基础。公元一世纪的赫伦写出了使用具体数解释求积法的《测量术》等著作。二世纪的托勒密完成了到那时为止的数理天文学的集大成著作《数学汇编》,结合天文学研究三角学。三世纪丢番图著《算术》,使用简略号求解不定方程式等问题,它对数学发展的影响仅次于《几何原本》。希腊数学中最突出的三大成就--欧几里得的几何学,阿基米德的穷竭法和阿波罗尼的圆锥曲线论,标志着当时数学的主体部分--算术、代数、几何基本上已经建立起来了。

罗马人征服了希腊也摧毁了希腊的文化。公元前47年,罗马人焚毁了亚历山大里亚图书馆,两个半世纪以来收集的藏书和50万份手稿竞付之一炬。

从5世纪到15世纪,数学发展的中心转移到了东方的印度、中亚细亚、阿拉伯国家和中国。在这1000多年时间里,数学主要是由于计算的需要,特别是由于天文学的需要而得到迅速发展。古希腊的数学看重抽象、逻辑和理论,强调数学是认识自然的工具,重点是几何;而古代中国和印度的数学看重具体、经验和应用,强调数学是支配自然的工具,重点是算术和代数。

印度的数学也是世界数学的重要组成部分。数学作为一门学科确立和发展起来。印度数学受婆罗门教的影响很大,此外还受希腊、中国和近东数学的影响,特别是受中国的影响。

此外,阿拉伯数学也有着举足轻重的作用,阿拉伯人改进了印度的计数系统,"代数"的研究对象规定为方程论;让几何从属于代数,不重视证明;引入正切、余切、正割、余割等三角函数,制作精密的三角函数表,发现平面三角与球面三角若干重要的公式,使三角学脱离天文学独立出来。

在我国,春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。战国时期的百家争鸣也促进了数学的发展,秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。

《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。魏、晋时期赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。这之后,我国数学经过像秦九邵、祖冲之、郭守敬、程大位这样的数学家进一步发展了我国的数学事业。

在西欧的历史上,中世纪的黑暗在一定程度上阻碍了数学的发展,15世纪开始了欧洲的文艺复兴,使欧洲的数学得以进一步发展,15世纪的数学活动集中在算术、代数和三角方面。缪勒的名著《三角全书》是欧洲人对平面和球面三角学所作的独立于天文学的第一个系统的阐述。16世纪塔塔利亚发现三次方程的代数解法,接受了负数并使用了虚数。16世纪最伟大的数学家是伟达,他写了许多关于三角学、代数学和几何学的著作,其中最著名的《分析方法入门》改进了符号,使代数学大为改观;斯蒂文创设了小数。17世纪初,对数的发明是初等数学的一大成就。1614年,耐普尔首创了对对数,1624年布里格斯引入了相当于现在的常用对数,计算方法因而向前推进了一大步。至此,初等数学的主体部分--算术、代数与几何已经全部形成,并且发展成熟。

变量数学时期从17世纪中叶到19世纪20年代,这一时期数学研究的主要内容是数量的变化及几何变换。这一时期的主要成果是解析几何、微积分、高等代数等学科。

17世纪是一个开创性的世纪。这个世纪中发生了对于数学具有重大意义的三件大事。 首先是伽里略实验数学方法的出现,它表明了数学与自然科学的一种崭新的结合。其特点是在所研究的现象中,找出一些可以度量的因素,并把数学方法应用到这些量的变化规律中去。第二件大事是笛卡儿的重要著作《方法谈》及其附录《几何学》于1637年发表。它引入了运动着的一点的坐标的概念,引入了变量和函数的概念。由于有了坐标,平面曲线与二元方程之间建立起了联系,由此产生了一门用代数方法研究几何学的新学科--解析几何学。这是数学的一个转折点,也是变量数学发展的第一个决定性步骤。第三件大事是微积分学的建立,最重要的工作是由牛顿和莱布尼兹各自独立完成的。他们认识到微分和积分实际上是一对逆运算,从而给出了微积分学基本定理,即牛顿-莱布尼兹公式。17世纪的数学,发生了许多深刻的、明显的变革。在数学的活动范围方面,数学教育扩大了,从事数学工作的人迅速增加,数学著作在较广的范围内得到传播,而且建立了各种学会。在数学的传统方面,从形的研究转向了数的研究,代数占据了主导地位。在数学发展的趋势方面,开始了科学数学化的过程。最早出现的是力学的数学化,它以1687年牛顿写的《自然哲学的数学原理》为代表,从三大定律出发,用数学的逻辑推理将力学定律逐个地、必然地引申出来。18世纪数学的各个学科,如三角学、解析几何学、微积分学、数论、方程论,得到快速发展。19世纪20年代出现了一个伟大的数学成就,它就是把微积分的理论基础牢固地建立在极限的概念上。柯西于1821年在《分析教程》一书中,发展了可接受的极限理论,然后极其严格地定义了函数的连续性、导数和积分,强调了研究级数收敛性的必要,给出了正项级数的根式判别法和积分判别法。而在这一时期,非欧几何的出现,成为数学史上的一件大事,非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。这时人们发现了与通常的欧几里得几何不同的、但也是正确的几何--非欧几何。非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。非欧几何的发现,黎曼和罗巴切夫斯基功不可灭,黎曼推广了空间的概念,开创了几何学一片更广阔的领域--黎曼几何学。后来,哈密顿发现了一种乘法交换律不成立的代数--四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗瓦开创了近世代数学的研究。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了被称为"分析的算术化"的著名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。

20世纪40~50年代,世界科学史上发生了三件惊天动地的大事,即原子能的利用、电子计算机的发明和空间技术的兴起。此外还出现了许多新的情况,促使数学发生急剧的变化。1945年,第一台电子计算机诞生以后,由于电子计算机应用广泛、影响巨大,围绕它很自然要形成一门庞大的科学。计算机的出现更是促进了数学的发展,使数学分为了三个领域,纯粹数学,计算机数学,应用数学。 现代数学虽然呈现出多姿多彩的局面,但是它的主要特点可以概括如下:(1)数学的对象、内容在深度和广度上都有了很大的发展,分析学、代数学、几何学的思想、理论和方法都发生了惊人的变化,数学的不断分化,不断综合的趋势都在加强。(2)电子计算机进入数学领域,产生巨大而深远的影响。(3)数学渗透到几乎所有的科学领域,并且起着越来越大的作用,纯粹数学不断向纵深发展,数理逻辑和数学基础已经成为整个数学大厦基础。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现如何借力复兴号发展有涉嫌版权的内容,欢迎发送邮件至:2145784@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。